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Abstract. A scattering matrix method for investigating the electron transport in quantum
waveguides is presented. By dividing the structure into a number of transverse slices, the
global scattering matrix is obtained by the composition of the individual scattering matrices
associated with each interface. Complicated geometries and inhomogeneous external potentials
are included in the formulation. It is shown that the proposed scattering matrix method possesses
many advantages over the traditional mode-matching and transfer matrix methods, especially in
treating the electron wave propagation in complicated geometries. Justification for the method
is provided by the unitarity of the calculated scattering matrix, and the consistency of the results
with those obtained by the recursive Green’s function method.

1. Introduction

Recent technological advances in nanometre-scale lithography and atomic-layer epitaxy
which can provide semiconductor microstructures smaller than the inelastic and elastic
mean scattering lengths have attracted much attention to studies of mesoscopic systems,
especially since the discovery of the quantized conductance phenomenon [1, 2]. One of the
most important problems in mesoscopic physics is that of obtaining an understanding of
the electron transport in a quasi-one-dimensional system where the electrons are confined
in a narrow channel. For a structure with transverse dimensions comparable to the electron
wavelength, the transport problems can be treated as a quantum ballistic scattering process.
Thus the nature of the problems becomes that of a scalar quantum waveguide. Because of
the prospects for device applications, a large amount of both experimental and theoretical
research on ballistic electron transport in quantum waveguides with various configurations
has been reported over the past few years [3, 4]. Many experimental studies of the
conductance versus the gate voltage in split-gate geometry for a heterojunction structure
have been reported, and a lot of interesting effects in ballistic transport have been found in
double- and multiple-constriction, single-bend or multiple-bend geometric structures [5].

Over the past few years, several analytical and numerical approaches to ballistic
transport have become well established. In the theoretical studies, the single-electron and
effective-mass approximations are usually applied, and it is often supposed that the wave-
guide structures have hard potential walls which would not allow any penetration of the
electron wave function into the lateral barriers. In general, the electron wave propagation in
waveguide structures is studied by the mode-matching (boundary-matching) method [6, 7]
and other methods [8, 9] including the recursive Green’s function method [10, 11]. For
complicated geometries, the problems are usually studied through numerical simulation of
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the Schr̈odinger wave equation—for example, in the time-dependent approach [12, 13], and
the quantum transmitting-boundary method [14].

The transfer matrix approach [15, 16] is another important tool in the investigation
of electron transport in low-dimensional systems, especially in the studies of coherent
tunnelling in quantum-well structures. Using the transfer matrix method, many interesting
effects, such as universal conductance fluctuations and weak localization, can be elegantly
analysed. In addition, the transfer matrix method proves to be very efficient in studies of
disordered systems, while the transfer matrix technique is unfortunately numerically singular
for structures with dimensions larger than the electron Fermi wavelength [17]. In the transfer
matrix formalism, numerical errors due to the exponential behaviour of the evanescent modes
arise unavoidably [18]. The problem in the transfer matrix method can be removed by
the scattering matrix algorithm. For systems with quasi-one-dimensional disorder, several
scattering matrix methods have been proposed by Bandyopadhyay and Cahay [17] and
Tamura and Ando [19], while for general two-dimensional mesoscopic systems, to the best
of our knowledge, a scattering matrix method has not been established. In this paper,
we present a comprehensive scattering matrix method for the electron transport in two-
dimensional mesoscopic systems. The single-electron and the effective-mass approximations
are applied as is usual in the literature. In general, we assume that the waveguide structures
have hard potential walls, and that the proposed formulation can also be used to analyse
electron transport in soft wall structures.

The paper is organized as follows. In the next section, the general formalism of
the scattering matrix approach is presented. In section 3, the method for calculating the
scattering matrix is presented. In section 4, we perform the numerical implementation of
the proposed method and compare our results with those obtained by the RGF method.
In section 5, we propose a generalized algorithm for treating multiple-terminal structures.
Finally, a brief summary is presented.

2. General formalism

We start from the two-dimensional Schrödinger equation[
− h̄2

2m∗

(
∂2

∂x2
+ ∂2

∂y2

)
+ Uc(x, y)+ Uex(x, y)

]
8(x, y) = E8(x, y) (1)

wherem∗ is the electron effective mass,Uc(x, y) is the lateral confining potential,Uex(x, y)
is an external potential, andE is the Fermi energy of the two-dimensional electron gas.

For a general waveguide structure with complicated geometries, one often divides the
cavity into a number of uniform sections—see figure 1. Therefore, the wave functions at
an arbitrary position in the cavity would be constructed as linear combinations of transverse
modes in the pertinent section. At an arbitrary positionx assumed to be located in themth
section, we have the following expansion of the wave function:

8(x, y) =
Nm∑
n=1

(ane
ikmn x + bne−ikmn x)φmn (y) (2)

(φm1 , φ
m
2 , . . . , φ

m
Nm
)T = Cm(ϕ

m
1 , ϕ

m
2 , . . . , ϕ

m
Nm
)T (3)

ϕmn (y) =
√

2/Dm sin(nπy/Dm) (4)

whereDm is the section width,Nm is the number of channels involved in transport in the
section,Cm is anNm-dimensional matrix, andkmn is the longitudinal wavelength for thenth
mode in themth section. Here, we assume hard-wall confinement for simplicity.
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Figure 1. A schematic view of a two-dimensional cavity which is divided into a number of
transverse slices along the longitudinal direction.

Although the evanescent modes are found to play an important role in the electron wave
propagation, in the terminals one can still consider just the propagating mode [20], while in
each section of the cavity one should consider four evanescent modes or more. Therefore,
Nm should be determined bykmn . By solving the following eigenvalue problem,Cm andkmn
can be obtained:

N ′m∑
j=1

Hm
ij (C

′
m)nj = [E − h̄2(kmn )

2/2m∗](C′m)ni (5)

Hm
ij =

∫ Dm

0
ϕmi (y)

[
− h̄2

2m∗
∂2

∂y2
+ Uex(xm, y)

]
ϕmj (y) dy (6)

whereN ′m should be sufficiently large in order to obtain a convergent result forkmn for
1 6 n 6 Nm. The desiredNm-dimensional matrixCm is taken from theN ′m-dimensional
matrix C′m, so it is not a unit matrix in the presence of an external potential [15].
In the absence of external potentials, the above formulations can be much simplified:
kmn =

√
2m∗E/h̄2− (nπ/Dm)2 andCm reduces to a unit matrix.

All of the waveguide structures considered in this paper are supposed to be divided into
two kinds of region: the straight terminals and the cavities to which the terminals attach
along the longitudinal direction. In general, neither the scattering matrix method nor the
transfer matrix method is suitable for those waveguide structures which cannot be divided
into intervals along the longitudinal direction.

In a waveguide structure, the wave function at positionx can be represented by a
2N(x)-dimensional column vectorA(x) which is given by

A(x) = [A+(x),A−(x)]T (7)

A+(x) = [a1eik1x, a2eik2x, . . . , ane
iknx ]T (8)

A−(x) = [b1e−ik1x, b2e−ik2x, . . . , bne
−iknx ]T. (9)

The components of the vectorsA+(x) andA−(x) denote the flux amplitudes of the right-
going and left-going waves, respectively. Ifx is in the input lead, we have further notation:
A+(x) = Ai (x) andA−(x) = A0(x), because a right-going wave is coming into the cavity
and a left-going wave is going out from the cavity in the input lead. Similar notation can
be used for the output lead.
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For two different positionsx1 < x2, the relations between the vectorsA(x1) andA(x2)

are expressed by a scattering matrix formulation:[
A−(x1)

A+(x2)

]
= S(x1, x2)

[
A+(x1)

A−(x2)

]
(10)

whereS(x1, x2) is an(N(x1)+N(x2))-dimensional scattering matrix. If the interval between
x1 andx2 is uniform, we haveN(x1) = N(x2) = N , and the corresponding matrixS can
be written readily:

S(x2− x1) =
[

0 P
P 0

]
(11)

whereP is anN -dimensional diagonal matrix with diagonal elementsPmm = eikm(x2−x1).
Here, we notice that only the wave component eikm δx is taken into account in the

scattering matrix formalism, while in the transfer matrix method, both wave components
eikm δx and e−ikm δx should be taken into consideration. For an evanescent mode, if the index
m or δx is large, eikm δx would become very small while e−ikm δx would become very large.
Therefore, numerical errors would inevitably occur in the calculations. In the scattering
matrix method, this kind of numerical error would not emerge.

For three different positionsx1 < x2 < x3, supposing that the scattering matrices
S(x1, x2) andS(x2, x3) are known, the scattering matrix connectingx1 andx3 is determined
by the composition law [19]

S(x1, x3) = S(x1, x2)⊗ S(x2, x3). (12)

For a general two-terminal cavity structure which is not uniform along the longitudinal
direction, one usually divides it into a number of transverse slices (see figure 1). The
number of slices should be large enough that each slice can be considered as a uniform
segment. The global scattering matrix for the cavity is constructed by the composition
of the individual scattering matrices associated with each slice. Supposing the number of
transverse slices isM and xk is the coordinate of the left-hand end of thekth slice, the
global scattering matrixS is determined by

S = S(x−0 , x
+
M) =

M−1∏
k=0

S(x+k , x
−
k+1)⊗ S(x−k+1, x

+
k+1) (13)

whereS(x−k+1, x
+
k+1) is the scattering matrix associated with the interface between thekth

and the(k+ 1)th slices. The wave functions in the two terminals which are labelled L and
R can be related by the global scattering matrix:[

A−L
A+R

]
= S

[
A+L
A−R

]
. (14)

In order to obtain the transmission coefficients, it should be noted that the definition
of the scattering matrix defined in equation (13) is slightly different from a standard one
[10] because the closed channels are involved. Supposing the number of open channels
is N0, what represent the flux amplitudes of the right-going (left-going) waves in open
channels are the firstN0 components of the vectorA+ (A−). To obtain the transmission
coefficients, we should calculate the elements that emerge in the firstN0 lines and columns
of theN -dimensional matricesSij (i, j = 1, 2), where theSij are the submatrices of the
scattering matrixS. For each submatrixSij these elements construct a newN0-dimensional

matrix Šij . A 2N0-dimensional scattering matrix̌S can be constructed with four matrices
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Šij . Bearing in mind that evanescent states do not exist in the incoming waves, the last
N −N0 elements ofA+L andA−R vanish; therefore, we have[

A0
L

A0
R

]
=
[

Š11 Š12

Š21 Š22

] [
Ai

L
Ai

R

]
(15)

whereA0
L, A0

R, Ai
L, andAi

R areN0-dimensional column vectors which are constructed
from the firstN0 elements of the vectorsA−L , A+R, A+L , andA−R respectively. Current

conservation requires the unitarity of theŠ-matrix, ŠŠ† = Š†Š = 1. The unitarity of the
Š-matrix serves as an important criterion for the validity of the results in the numerical
computations. In the calculations, we evaluate the diagonal elements ofŠŠ† which should
each be 1. In all of the results presented in this paper, the deviation from this expectation
is no more than 10−3. The transmission coefficientT mnij which denotes the norm of the
probability amplitude with which an electron coming from the leadi in the transverse mode
m is transmitted into the moden in the leadj can be readily written down:

T mnij = |(Šij )mn|2. (16)

If i = j , T mnij becomes the reflection coefficientRmni . Supposing electrons are incident from
the left-hand lead L in which all of the open channels are equivalently occupied, we have
Ai

L = {1, 1, . . . ,1}T andAi
R = {0, 0, . . . ,0}T; then the total transmission coefficientT and

reflection coefficientR are given by

T =
∣∣∣Š21A

i
L

∣∣∣ (17)

R =
∣∣∣Š11A

i
L

∣∣∣ (18)

where| · · · | denotes the inner product of a column vector. Although the formulation is given
for the two-probe structure, generalizing it to the multi-terminal structure is straightforward.
In the next section, we will provide a method for evaluating the scattering matrix.

Figure 2. A schematic view of two linked segments with different widths.

3. The method of calculation

In this section, we provide a method for calculating the scattering matrix associated with an
interface at which the boundaries of two linked segments are discontinuous. The coordinates
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of the calculation are shown in figure 2. When the difference between the width of the
left-hand segmentWL and that of the right-hand segmentWR is not large, one can take
the numbers of transverse modes in the two segments to be the same as each other, i.e.,
NL = NR = N . At the interface, the wave functions in the two segments are represented
by two N -dimensional column vectorsAL andAR, respectively, which are related by a
scattering matrixS = S(0−, 0+):[

A−L
A+R

]
=
[

S11 S12

S21 S22

] [
A+L
A−R

]
. (19)

At the interface, supposingx = 0, the continuity of the wave functions and their first
derivatives requires that

NL∑
m=1

(aL
m + bL

m)φ
L
m(y) =

NR∑
n=1

(aR
n + bR

n )φ
R
n (y) (20)

NL∑
m=1

(aL
m − bL

m)k
L
mφ

L
m(y) =

NR∑
n=1

(aR
n − bR

n )k
R
n φ

R
n (y). (21)

Insertion of equation (3) into the above expressions gives
NL∑
m=1

ϕL
m(y)

NL∑
m′=1

CL
m′m(a

L
m′ + bL

m′) =
NR∑
n=1

ϕR
n (y)

NR∑
n′=1

CR
n′n(a

R
n′ + bR

n′) (22)

NL∑
m=1

ϕL
m(y)

NL∑
m′=1

CL
m′mk

L
m′(a

L
m′ − bL

m′) =
NR∑
n=1

ϕR
n (y)

NR∑
n′=1

CR
n′nk

R
n′(a

R
n′ − bR

n′). (23)

We should be very careful to eliminate the transverse modes in the above formulations
when there is an appreciable difference betweenWL and WR, as has been clarified in
reference [21]. In the case whereWL < WR, we multiply both sides of equations (22) and
(23) byϕR

n (y) andϕL
m(y) respectively, integrate with respect toy, and obtain

NL∑
m=1

Dmn

NL∑
m′=1

CL
m′m(a

L
m′ + bL

m′) =
NR∑
n′=1

CR
n′n(a

R
n′ + bR

n′) (24)

NL∑
m′=1

CL
m′mk

L
m′(a

L
m′ − bL

m′) =
NR∑
n=1

Dmn

NR∑
n′=1

CR
n′nk

R
n′(a

R
n′ − bR

n′) (25)

where theDmn are the coefficients which denote the coupling between the transverse modes
in the two regions, and are given by

Dmn =
∫
ϕL
m(y)ϕ

R
n (y) dy. (26)

The integration should be performed in the region with smaller width; here, it is the left-hand
region.

After rewriting equations (24) and (25) in the form of a matrix, we obtain

DTCT
L(A

+
L +A−L ) = CT

R(A
+
R +A−R) (27)

CT
LKL(A

+
L −A−L ) = DCT

RKR(A
+
R −A−R) (28)

whereKL is aNL-dimensional diagonal matrix with

(KL)mm = kL
m (29a)

andKR is anNR-dimensional diagonal matrix with

(KR)mm = kR
m (29b)
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and D is anNL × NR matrix with elementsDmn. Equations (27) and (28) enable us to
obtain the following matrices ifNL = NR:

S11 = −(M1+M2)
−1(M1−M2) (30)

S12 = 2(M1+M2)
−1 (31)

S21 = 2(M3+M4)
−1 (32)

S22 = −(M3+M4)
−1(M3−M4) (33)

where

M1 = DTCT
L (34)

M2 = (DCT
RKR)

−1KL (35)

M3 = (DTCT
L)
−1 (36)

M4 = K−1
L DCT

RKR. (37)

When the difference between the widths of the two segments is very large,NL and
NR should not be the same as each other. In this case, the conventional transfer matrix
method and the above procedures cannot be applied, while the problem can be treated by
our scattering matrix method. Combining equations (27) and (28) into one, we obtain

MLAL = MRAR (38)

where

ML =
[

DTCT
L

CT
LKL

]
(39)

MR =
[

CT
R

DCT
RKR

]
. (40)

The matricesML andMR can be rewritten in terms of four blocks:

ML =
[
(ML)11 (ML)12

(ML)21 (ML)22

]
(41)

MR =
[
(MR)11 (MR)12

(MR)21 (MR)22

]
(42)

where(ML)11 and (ML)12 areNR × NL matrices,(ML)21 and (ML)22 areNL-dimensional
matrices,(MR)11 and (MR)12 are NR-dimensional matrices, and(MR)21 and (MR)22 are
NL ×NR matrices. By tedious matrix algebra we obtain the desired matrices:

S11 = M1
[
M2(ML)11− (ML)21

]
(43)

S12 = M1
[
(MR)22−M2(MR)12

]
(44)

where

M1 =
[
(ML)22−M2(ML)12

]−1
(45)

M2 = (MR)21(MR)
−1
11 (46)

and

S21 = M3
[
(ML)11−M4(ML)21

]
(47)

S22 = M3
[
M4(MR)22− (MR)12

]
(48)

where

M3 =
[
(MR)11−M4(MR)21

]−1
(49)

M4 = (ML)12(ML)
−1
22 . (50)
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In the above, we suppose that the width of the left-hand segment is not larger than that
of the right-hand segment. IfWL > WR, we can proceed with the following procedures to
obtain the corresponding scattering matrix. First, we interchange all of the quantities with
subscript L and those with subscript R. Then we perform the above procedures and obtain a
scattering matrixS. In the case whereWL > WR, the desired scattering matrixS′ is given
by

S′ =
[

S22 S21

S12 S11

]
. (51)

4. Numerical implementation

In this section, we perform numerical calculations of the transmission for several kinds
of two-terminal waveguide structure using the proposed scattering matrix method. In the
numerical calculations, five or more evanescent modes are involved for each segment. Our
scattering matrix method has no limitation as regards the number of transverse modes
because numerical errors due to the exponential behaviour of the evanescent modes do not
exist in the method. The number of divided segments should be large enough that the
desired results are obtained. We find that it is sufficient to set the number to be 50.

Figure 3. Transmission coefficients versuskW/π calculated by our method (solid line) and the
RGF method (dotted line).

First, we make a comparison of the results obtained by our method and the RGF method
for the structure with a trapezoid-shaped cavity as shown in the inset of figure 3. From the
figure, we find that the two results are in excellent agreement with each other, which can
be taken as a justification of our scattering matrix method.

In order to realize quantum-modulated transistor action in an electron waveguide
structure, one often resorts to a multiple-stub structure [11, 16]. Quantum wire with a
periodic serial structure has been studied by Wuet al [16] using a transfer matrix method.
Just as pointed out in reference [16], we also find that the total transfer matrix becomes
numerically singular when the length of channel linking the two adjacent stubs is large. In
fact, we think that no transfer matrix method is suitable for the study of periodic quantum dot
structures. For the periodic multiple-stub structure, the total transfer matrixT is determined
by the transfer matrixT1 for a single-stub, i.e.,T = Tn1, wheren is the number of stubs. Let
the diagonalized form ofT1 be labelledλ and the matrixP be the transformation matrix
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which diagonalizesT1 such that

P−1T1P = λ. (52)

Then the total transfer matrix is expressed as

T = Tn1 = PλnP−1. (53)

For a diagonal element of the matrixλ, λj , λnj would be become either very small if|λj | < 1
or very large if |λj | > 1, which is to say, numerical errors would be accumulated in the
transfer matrix algorithm for the multiple-stub structure.

Figure 4. Transmission coefficients versuskW/π for a multiple-stub structure shown in the
inset.

Although the transfer matrix technique is very efficient for structures whose dimensions
are not very large, it is numerically singular for structures with dimensions much larger
than the electron de Broglie wavelength [17], while the same problem does not exist in the
scattering matrix method and we find that numerical errors would not be accumulated in the
composition of scattering matrices. In figure 4, we provide the results for a multiple-stub
structure shown in the inset of the figure. The length of channel linking the two adjacent
stubs on one side of the main wire is set to be 2W , whereW is the width of the terminal
as well as the width and height of the stub. Similar structures are found to exhibit perfect
quantum-modulated transistor action.

As can be seen in the last section, external potentials can be incorporated in the scattering
matrix formulation. In fact, the so-called external potentials do not always imply that
external potentials, such as electric fields and magnetic fields, actually exist. For example,
disorder would be considered as a kind of external potential and can be treated by the
method. In figure 5, we provide the results for the structure with a circular obstacle in its
symmetric semicircular cavity. The circular obstacle lies at the centre in the cavity and its
radius is equal to half of the lead widthW . The circular obstacle can be described by the
following expression:

Uex(x, y) =
{

10E1 x2+ y2 < (W/2)2

0 elsewhere in the cavity
(54)

whereE1 = (h̄π/W)2/2m∗ and the original point is set to be at the centre of the cavity.
From the figure, it is found that the effect of the obstacle on the transmission is enhanced
with the increase of the electron energy, which can be well understood when the relationship
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Figure 5. For the structure with a circular obstacle in its cavity, the transmission coefficient
versuskW/π . The solid line is for the case in which the obstacle is not taken into account and
the dotted line is for the case in which the obstacle is included in the calculations.

between the electron wavelength and the dimensions of the obstacle is taken into account.
The 2D propagation vector for the fundamental propagating mode at the terminalk1 is given
by k1W/π =

√
(kW/π)2− 1, and the corresponding wavelength is given byλ1 = 2π/k1.

WhenkW/π is increased from 1 to 2, the electron wavelengthλ1 is decreased from∞ to
1.15W . As the electron energy is close to the first threshold, the longitudinal wavelength
is so long that the obstacle has little effect on the electron transmission. In figure 5, it is
found that the two results are very close to each other whenkW/π is close to 1. As the
electron energy is close to the second threshold, the electron wavelength becomes close
to the dimensions of the obstacle, and it is found that the effects of the obstacle on the
transmission are very notable.

5. Multi-terminal structure

Treating the scattering problem in a multi-terminal structure is very difficult whatever
method one uses. Except numerical methods based on the finite-difference or the finite-
element technique, only the RGF method can be used to treat general multi-terminal
structures, while it is unfortunately the case that the pertinent algorithm has to be
reformulated from the beginning for each structure. For those multi-terminal structures
in which all of the terminals are parallel to each other, our scattering matrix method can be
applied.

In this section, we provide the scattering matrix formulations for treating a typical four-
terminal structure as shown in the inset of figure 7. In the four-terminal structure, there are
two terminals attached to the left-hand end of the cavity and the other two terminals are
attached to the right-hand end. In order to obtain the global scattering matrix, the scattering
matrix associated with the interface where two terminals attach to the left-hand end of the
cavity should be calculated first. As shown in figure 6, the two left-hand terminals are
labelled L1 and L2, and the left-hand end of the cavity is labelled R. The wave functions
in the three regions are related to each other by a scattering matrixS:A−L1

A−L2

A+R

 = S

A+L1

A+L2

A−R

 . (55)
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Figure 6. A schematic view of two terminals attached
to one end of the cavity.

Figure 7. The inverse resistanceR−1
14,14 versuskW/π

for the four-terminal structure shown in the inset.

Supposing thatN andM are the numbers of transverse modes considered in region R and
L1 (L2), respectively, we have

ML

[
AL1

AL2

]
= MRAR. (56)

The matricesML ((N + 2M)× 4M) andMR ((N + 2M)× 2N ) are given as follows:

MR =
 CT

R[
DL1

DL2

]
CT

RKR

 (57)

ML =
 [ DT

L1
CT

L1
DT

L2
CT

L2
][

CT
L1

KL1 0
0 CT

L2
KL2

] (58)

where the notation has a similar meaning to that in equations (38)–(40) We rewriteML and
MR in terms of(N + 2M)×M blocks and(N + 2M)×N blocks, respectively:

ML =
[
M+L1

,M−L1
,M+L2

,M−L2

]
(59)

MR =
[
M+R,M−R

]
. (60)

Therefore, the scattering matrixS can be obtained readily:

S = [M−L1
,M−L2

,−M+R
]−1 [−M+L1

,−M+L2
,M−R

]
. (61)

The scattering matrix associated with the right-hand end of the cavity can be obtained
similarly. By the composition law, it is not difficult to calculate the global scattering matrix
for the four-terminal structure.

In figure 7, we provide the calculated Büttiker resistance [22]R14,14 for the four-terminal
structure as shown in the inset of the same figure. The parameters are taken to be the same
as those adopted in figure 8 of reference [23]. Comparison of our results with those in
reference [23] shows that the two results are well consistent with each other askW/π < 7.
WhenkW/π > 7, as can seen from the two results, the profile of our results becomes more
complicated while that in reference [23] becomes simpler. We think that the results for
kW/π > 7 in reference [23] are not correct because the mode-mixing effect is enhanced
and the interference between various modes becomes more complicated for higher electron
energies. In fact, similar results to those in reference [23] would be obtained if the number
of transverse modes in the cavity is not taken to be large enough for high electron energies.
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6. Conclusions

In summary, we have presented a comprehensive scattering matrix method for investigating
the electron transport in quantum waveguides. By dividing the structure into a number
of transverse slices, the global scattering matrix is constructed by the composition of
the individual scattering matrices associated with each interface. We have investigated
complicated geometries and inhomogeneous external potentials using the proposed scattering
matrix method. We have shown that the scattering matrix method possesses many
advantages over the traditional transfer matrix method, especially in treating the electron
wave propagation in complicated geometries. We have justified our method by dem-
onstrating the unitarity of the calculated scattering matrix and the consistency of the results
with those obtained by the recursive Green’s function method.
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